Mycorrhizal species differentially alter plant growth and response to herbivory.

نویسندگان

  • Alison E Bennett
  • James D Bever
چکیده

Plants simultaneously interact with multiple organisms which can both positively and negatively affect their growth. Herbivores can reduce plant growth through loss of plant biomass and photosynthetic area, while plant mutualists, such as mycorrhizal fungi, can increase plant growth through uptake of essential nutrients. This is the first study examining whether species-specific associations with mycorrhizal fungi alter plant tolerance to herbivory. We grew Plantago lanceolata plants with three species of mycorrhizal fungi previously shown to have differential impacts on plant growth and subjected them to herbivory by the specialist lepidopteran herbivore, Junonia coenia. Association with mycorrhizal fungus Glomus white provided the greatest growth benefit but did not alter plant response to herbivory. Alternatively, association with Archaeospora trappei provided less growth promotion but did lead to tolerance to herbivory in the form of an increased growth rate. Finally, an association with the fungus Scutellospora calospora led to neither plant growth promotion nor tolerance to herbivory. In fact, an association with S. calospora appeared to reduce plant tolerance to herbivory. An association with all three species of mycorrhizae resulted in a pattern of growth similar to that of plants grown only with Glomus white, suggesting that growth promotion by multiple mycorrhizal species is driven by the inclusion of a "super fungus," in this case, Glomus white. This work illustrates that plant response to herbivory depends upon the mycorrhizal fungal mutualist with which a plant is associated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colo...

متن کامل

Does mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning?

Both mycorrhizae and herbivore damage cause rapid changes in source-sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to herbivory might depend on the presence or absence of mycorrhizae. We examined the effects of mycor...

متن کامل

Improvement of Growth and Stimulation of Biosynthesis Pathway of Polyphenols in Melissa officinalis L. Colonized by Arbuscular Mycorrhizal

The increasing demand for medicinal plants has amplified the importance of the development of effective methods for enhancing the cultivation of these plants. The association of arbuscular mycorrhizal (AM) fungi with medicinal plants has been found to alter the level of secondary metabolites by affecting the plant metabolism. Lemon balm (Melissa officinalis L.), is an important medicinal plant ...

متن کامل

Phosphorus Inflow into Two Species of Clover Root with Different Morphology Colonized by AM Fungi

The effects of arbuscular mycorrhizal (AM) fungi on growth and phosphorus (P) inflow into two species of clover plant with different root morphology were studied. The experiment was arranged as a randomized complete block design consisting of a 2×3×3 factorial combination of two clover species (Trifolium alexandrinum L. and Trifolium pratense L.), three mycorrhiza states (without mycorrhiza, Gl...

متن کامل

Growth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis

Lead is a nonessential element that has a negative effect on plant growth and development. Plant symbiosis with arbuscular mycorrhizal fungi (AMF) in soils contaminated with heavy metals can affect growth of plant, nutrition and tolerance against heavy metals. In this study, the effect arbuscular mycorrhizal fungi Glomus intraradices on the growth, photosynthetic pigments, protein content, prol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2007